Unsupervised re-scoring of observation probability based on maximum entropy criterion by using confidence measure with telephone speech
نویسندگان
چکیده
This paper describes a two-step Viterbi decoding based on reinforcement learning and information theory with telephone speech. The idea is to strength or weaken HMM’s by using Bayesbased confidence measure (BBCM) and distances between models. If HMM’s in the N-best list show a low BBCM, the second Viterbi decoding will prioritize the search on neighboring models according to their distances to the N-best HMM’s. The current reinforcement learning mechanism is modeled as the linear combination of two metrics or information sources. Moreover, a criterion based on incremental conditional entropy maximization to optimize a linear combination of metrics or information sources is also presented. As shown here, the method requires only one adapting utterance and can lead to a reduction in WER as high as 10.9%.
منابع مشابه
Unsupervised re-scoring of observation probability in viterbi based on reinforcement learning by using confidence measure and HMM neighborhood
This paper proposes a new paradigm to compensate for mismatch condition in speech recognition. A two-step Viterbi decoding based on reinforcement learning is described. The idea is to strength or weaken HMM’s by using Bayes-based confidence measure (BBCM) and distances between models. If HMM’s in the N-best list show a low BBCM, the second Viterbi decoding will prioritize the search on neighbor...
متن کاملWord error rate minimization using an integrated confidence measure
This paper describes a new criterion of speech recognition using an integrated confidence measure for minimization of the word error rate (WER). Conventional criteria for WER minimization obtain an expected WER of a sentence hypothesis merely by comparing it with other hypotheses in an n-best list. The proposed criterion estimates the expected WER by using an integrated confidence measure with ...
متن کاملImprovements in linear transform based speaker adaptation
This paper presents three forms of linear transform based speaker adaptation that can give better performance than standard maximum likelihood linear regression (MLLR) adaptation. For unsupervised adaptation, a lattice-based technique is introduced which is compared to MLLR using confidence scores. For supervised adaptation, estimation of the adaptation matrices using the maximum mutual informa...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملRobust DNN-Based VAD Augmented with Phone Entropy Based Rejection of Background Speech
We propose a DNN-based voice activity detector augmented by entropy based frame rejection. DNN-based VAD classifies a frame into speech or non-speech and achieves significantly higher VAD performance compared to conventional statistical model-based VAD. We observed that many of the remaining errors are false alarms caused by background human speech, such as TV / radio or surrounding peoples’ co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008